1,577 research outputs found

    Coulomb potential from a particle in uniform ultrarelativistic motion

    Get PDF
    The Coulomb potential produced by an ultrarelativistic particle (such as a heavy ion) in uniform motion is shown in the appropriate gauge to factorize into a longitudinal Dirac delta function of (z - t) times the simple two dimensional potential solution in the transverse direction. This form makes manifest the source of the energy independence of the interaction.Comment: 5 pages, latex, revtex source, no figure

    Some exact analytical results and a semi-empirical formula for single electron ionization induced by ultrarelativistic heavy ions

    Get PDF
    The delta function gauge of the electromagnetic potential allows semiclassical formulas to be obtained for the probability of exciting a single electron out of the ground state in an ultrarelativistic heavy ion reaction. Exact formulas have been obtained in the limits of zero impact parameter and large, perturbative, impact parameter. The perturbative impact parameter result can be exploited to obtain a semi-empirical cross section formula of the form, sigma = A ln(gamma) + B, for single electron ionization. A and B can be evaluated for any combination of target and projectile, and the resulting simple formula is good at all ultrarelativistic energies. The analytical form of A and B elucidates a result previously found in numerical calculations: scaled ionization cross sections decrease with increasing charge of the nucleus being ionized. The cross section values obtained from the present formula are in good agreement with recent CERN SPS data from a Pb beam on various nuclear targets.Comment: 14 pages, latex, revtex source, no figure

    The electromagnetic interaction of ultrarelativistic heavy ions

    Get PDF
    The validity of a delta-function approximation for the electromagnetic interaction of relativistic heavy ions is investigated. The production of e+e- pairs, with electron capture, is used as a test of the approximation.Comment: 11 pages, 3 figure

    Higher Order QED Calculation of Ultrarelativistic Heavy Ion Production of mu+ mu- Pairs

    Full text link
    A higher order QED calculation of the ultraperipheral heavy ion cross section for mu+ mu- pair production at RHIC and LHC is carried out. The so-called "Coulomb corrections" lead to an even greater percentage decrease of mu+ mu- production from perturbation theory than the corresponding decrease for e+ e- pair production. Unlike the e+ e- case, the finite charge distribution of the ions (form factor) and the necessary subtraction of impact parameters with matter overlap are significant effects in calculation an observable ultraperipheral mu+ mu- total cross section.Comment: 7 pages, 3 figures. Version expanded with explanatory text and two appendices on form factor treatmen

    Two Center Light Cone Calculation of Pair Production Induced by Ultrarelativistic Heavy Ions

    Full text link
    An exact solution of the two center time-dependent Dirac equation for pair production induced by ultrarelativistic heavy ion collisions is presented. Cross sections to specific final states approach those of perturbation theory. Multiplicity rates are reduced from perturbation theory.Comment: 22 pages, latex, revtex source, one postscript figur

    Nuclear and Particle Astrophysics at CIPANP 2003

    Full text link
    In the nuclear and particle astrophysics session of CIPANP 2003 we heard talks on a number of topics, focused for the most part into four broad areas. Here we outline the discussions of the standard cosmological model, dark matter searches, cosmic rays, and neutrino astrophysics. The robustness of theoretical and experimental programs in all of these areas is very encouraging, and we expect to have many questions answered, and new ones asked, in time for CIPANP 2006.Comment: 5 pages, uses aipproc.cls, parallel session summary to appear in proceedings of CIPANP 200

    Implications of muon anomalous magnetic moment for supersymmetric dark matter

    Get PDF
    The anomalous magnetic moment of the muon has recently been measured to be in conflict with the Standard Model prediction with an excess of 2.6 sigma. Taking the excess at face value as a measurement of the supersymmetric contribution, we find that at 95% confidence level it imposes an upper bound of 500 GeV on the neutralino mass and forbids higgsinos as being the bulk of cold dark matter. Other implications for the astrophysical detection of neutralinos include: an accessible minimum direct detection rate, lower bounds on the indirect detection rate of neutrinos from the Sun and the Earth, and a suppression of the intensity of gamma-ray lines from neutralino annihilations in the galactic halo.Comment: 4 pages, 2 figures, revised version accepted for publication in Physical Review Letter
    • …
    corecore